Shen Lu

September 24, 2020

1 Reminder of some definitions

Definition 1.1. Throughout this section A will be a C*-algebra and X will be a *(right) Hilbert A-module*. That is, X is a complex vector space with a (right) A-action, i.e., a bilinear pairing $(x, a) \mapsto x \cdot a : X \times A \to X$ satisfying:

- (i) $(x+y) \cdot a = x \cdot a + y \cdot a$,
- (ii) $x \cdot (a+b) = x \cdot a + x \cdot b$,
- (iii) $(x \cdot a) \cdot b = x \cdot (ab),$
- (iv) $(\lambda x) \cdot a = x \cdot (\lambda a) = \lambda (x \cdot a).$

In addition, X has an A-valued the inner product $\langle \cdot, \cdot \rangle_A : \mathsf{X} \times \mathsf{X} \to A$ satisfying

- (i) $\langle x, \lambda y + \mu z \rangle_A = \lambda \langle x, y \rangle_A + \mu \langle x, z \rangle_A$,
- (ii) $\langle x, y \cdot a \rangle_A = \langle x, y \rangle_A a$,
- (iii) $\langle x, y \rangle_A^* = \langle y, x \rangle_A$,
- (iv) $\langle x, x \rangle_A \ge 0$ (as a positive element of A),
- (v) $\langle x, x \rangle = 0$ implies that x = 0.

Moreover, X is complete with respect to the norm defined by $||x||_A := ||\langle x, x \rangle_A||^{1/2}$.

Definition 1.2. A Hilbert A-module is *full* if the ideal

$$I = \operatorname{span}\{\langle x, y \rangle_A : x, y \in \mathsf{X}\}\$$

is dense in A.

Definition 1.3. Suppose X and Y are Hilbert A-modules. A function $T : X \to Y$ is *adjointable* if there is a function $T^* : Y \to X$ such that

$$\langle T(x), y \rangle_A = \langle x, T^*(y) \rangle_A \quad \text{for all } x, y \in \mathsf{X}$$

We denote by $\mathcal{L}(X, Y)$ the set of all adjointable operators from X to Y, and $\mathcal{L}(X)$ for $\mathcal{L}(X, X)$.

Definition 1.4. Let X and Y be two Hilbert A-modules. For $x \in X$ and $y \in Y$, we define $\theta_{x,y} : X \to Y$ by $\theta_{x,y}(z) = x \cdot \langle y, z \rangle_A$. We define $\mathcal{K}(X, Y)$ to be the closed linear subspace of $\mathcal{L}(X, Y)$ spanned by $\{\theta_{x,y} : x \in X \text{ and } y \in Y\}$. In particular, $\mathcal{K}(X) := \mathcal{K}(X, X)$.

Definition 1.5. In the strict topology (strong operator topology) on $\mathcal{L}(X)$, $T_i \to T$ if and only if $T_i x \to T x$ (in norm topology on X) for every $x \in X$.

2 Unitization

There are more than one way to embed a C*-algebra in a unital C*-algebra.

Definition 2.1. An ideal I in a C*-algebra A is *essential* if I has nonzero intersection with every other nonzero ideal in A.

Lemma 2.2. An ideal I is essential if and only if $aI = \{0\}$ implies a = 0.

Theorem 2.3. Up to isomorphism, there is a unique unital C^* -algebra which contains A as an essential ideal and is maximal in the sense that any other such algebra can be embedded in it.

This C*-algebra is called the multiplier algebra and is denoted by M(A).

Definition 2.4. (via Universal Property) Let A be a C*-algebra. Its multiplier algebra M(A) is any C*-algebra satisfying the following universal property: for all C*-algebra D containing A as an essential ideal, there exists a unique *-homomorphism $\Psi: D \to M(A)$ such that Ψ extends the identity homomorphism on A.

2.1 Double centralizers (from *Murphy*)

The "traditional" definition of M(A) for any C*-algebra A is given in terms of the double centralizer.

Definition 2.5. A double centralizer for a C*-algebra A is a pair (L, R) of bounded linear maps on A, such that for all $a, b \in A$

$$L(ab) = L(a)b,$$
 $R(ab) = aR(b)$ and $R(a)b = aL(b).$

Example 2.6. For example, if $c \in A$ is fixed, and L_c , R_c are the linear maps on A defined by $L_c(a) = ca$ and $R_c(a) = ac$, then (L_c, R_c) is a double centralizer on A. In Example 2.6, one can check that $||L_c||_{op} = ||R_c||_{op} = ||c||$. The map $c \mapsto (L_c, R_c)$ ends up being how we embed A into M(A). More generally, we have the following:

Lemma 2.7. If (L, R) is a double centralizer on a C*-algebra A, then ||L|| = ||R||.

Denote the set of all double centralizers on a C*-algebra A by M(A). We define the norm on (L, R) to be ||L|| = ||R|| from Lemma 2.7. We define the following operators on M(A):

- (i) $(L_1, R_1) + (L_2, R_2) = (L_1 + L_2, R_2 + R_1),$
- (ii) $\lambda(L, R) = (\lambda L, \lambda R),$
- (iii) $(L_1, R_1)(L_2, R_2) = (L_1L_2, R_2R_1),$
- (iv) $(L, R)^* = (R^*, L^*)$

Theorem 2.8. If A is a C^{*}-algebra, then M(A) with the norm and operations defined as above is a unital C^{*}-algebra with identity (id_A, id_A) .

The map $A \to M(A)$, $a \mapsto (L_a, R_a)$ is an isometric *-homomorphism, so A can be realized as a closed *-subalgebra of M(A).

2.2 M(A) as the Adjointable Operators on A_A

For any C*-algebra A, we can form a (right) Hilbert A-module, $X = A_A$, by letting A act on itself by right multiplication: $a \cdot b = ab$, and define $\langle a, b \rangle_A = a^*b$.

We identify A with $\mathcal{K}(A_A)$ in the following way. For each fixed $a \in A$, we can consider the (adjointable) operators L_a on A_A given by $L_a(x) = ax$, whose adjoint is L_{a^*} . One checks that the map

$$L: \begin{cases} A \to \mathcal{L}(A_A) \\ a \mapsto L_a \end{cases}$$

is an isometric homomorphism, so it embeds A onto a C*-subalgebra of $\mathcal{L}(A_A)$. Since

$$\theta_{a,b}(c) = a \langle b, c \rangle_A = ab^* c = L_{ab^*}(c)$$

and products of the form ab^* is dense in A, this map L is an isomorphism of A onto $\mathcal{K}(A_A)$.

It will turn out that M(A) can be identified with $\mathcal{L}(A_A)$. To show this, we need to prove the following:

- $A \cong \mathcal{K}(A_A)$ is an essential ideal of $\mathcal{L}(A_A)$. This follows from Lemma 2.2.
- maximal: any C*-algebra B containing A as an essential ideal embedded in $\mathcal{L}(A_A)$,
- $\mathcal{L}(A_A)$ is unique.

Definition 2.9. Let A be a C*-algebra and X be a Hilbert A-module. We say that a *-homomorphism is *nondegenerate* if $\alpha(A)X$ (linear space of products of elements of $\alpha(A)$ and X) is dense in X.

Example 2.10. The inclusion map $\mathcal{K}(\mathsf{X}) \hookrightarrow \mathcal{L}(\mathsf{X})$ is nondegenerate.

Proposition 2.11. Let A, B, and C be C^* -algebras with B an ideal in C, and let X be a Hilbert A-module. If $\alpha : B \to \mathcal{L}(X)$ is a nondegenerate *-homomorphism, then α extends uniquely to a *-homomorphism $\overline{\alpha} : C \to \mathcal{L}(X)$. If α is injective and B is essential in C, then $\overline{\alpha}$ is injective.

Applying to B = A and $X = A_A$ with α being the embedding of A in $\mathcal{L}(A_A)$, it follows that any C*-algebra containing A as an essential ideal can be embedded in $\mathcal{L}(A_A)$. Uniqueness also follows fro the above Proposition.

Example 2.12 (Theorem). For a Hilbert A-module $X, \mathcal{L}(X) \cong M(\mathcal{K}(X))$.

Example 2.13. Let X be a locally compact space, then $M(C_0(X)) \cong C(\beta X)$, where βX is the Stone-Čech compactification of X.

3 Morphisms

Definition 3.1. For C*-algebras A and B, we define a morphism from A to B to be a nondegenerate *-homomorphism from A to M(B). We denote the set of all morphisms from A to B by Mor(A, B).

Proposition 3.2. Let A and B be C*-algebras and let X be a Hilbert B-module. For a *-homomorphism $\alpha : A \to \mathcal{L}(X)$, the following conditions are equivalent:

- (i) α is nondegenerate,
- (ii) α is the restriction of A of a unital *-homomorphism $\overline{\alpha}$ from M(A) to $\mathcal{L}(X)$ which is strictly continuous on the unit ball,
- (iii) for some approximate unit (e_i) of A, $\alpha(e_i) \to \operatorname{Id}_X$ strictly, where Id_X is the identity map on X.

To ease notation, we usually just write $\alpha \in Mor(A, B)$ (rather than $\overline{\alpha}$) to denote the extension of α to M(A). For $\beta \in Mor(B, C)$, the composition defined when we interpret β to be its extension from M(B) to M(C).