Lance Chapter 2: Multipliers and morphisms

Shen Lu

September 24, 2020

1 Reminder of some definitions

Definition 1.1. Throughout this section A will be a C^{*}-algebra and X will be a (right) Hilbert A-module. That is, X is a complex vector space with a (right) A-action, i.e., a bilinear pairing $(x, a) \mapsto x \cdot a: \mathrm{X} \times A \rightarrow \mathrm{X}$ satisfying:
(i) $(x+y) \cdot a=x \cdot a+y \cdot a$,
(ii) $x \cdot(a+b)=x \cdot a+x \cdot b$,
(iii) $(x \cdot a) \cdot b=x \cdot(a b)$,
(iv) $(\lambda x) \cdot a=x \cdot(\lambda a)=\lambda(x \cdot a)$.

In addition, X has an A-valued the inner product $\langle\cdot, \cdot\rangle_{A}: \mathrm{X} \times \mathrm{X} \rightarrow A$ satisfying
(i) $\langle x, \lambda y+\mu z\rangle_{A}=\lambda\langle x, y\rangle_{A}+\mu\langle x, z\rangle_{A}$,
(ii) $\langle x, y \cdot a\rangle_{A}=\langle x, y\rangle_{A} a$,
(iii) $\langle x, y\rangle_{A}^{*}=\langle y, x\rangle_{A}$,
(iv) $\langle x, x\rangle_{A} \geq 0$ (as a positive element of A),
(v) $\langle x, x\rangle=0$ implies that $x=0$.

Moreover, X is complete with respect to the norm defined by $\|x\|_{A}:=\left\|\langle x, x\rangle_{A}\right\|^{1 / 2}$.
Definition 1.2. A Hilbert A-module is full if the ideal

$$
I=\operatorname{span}\left\{\langle x, y\rangle_{A}: x, y \in \mathrm{X}\right\}
$$

is dense in A.
Definition 1.3. Suppose X and Y are Hilbert A-modules. A function $T: \mathrm{X} \rightarrow \mathrm{Y}$ is adjointable if there is a function $T^{*}: \mathrm{Y} \rightarrow \mathrm{X}$ such that

$$
\langle T(x), y\rangle_{A}=\left\langle x, T^{*}(y)\right\rangle_{A} \quad \text { for all } x, y \in \mathrm{X}
$$

We denote by $\mathcal{L}(X, Y)$ the set of all adjointable operators from X to Y, and $\mathcal{L}(X)$ for $\mathcal{L}(X, X)$.

Definition 1.4. Let X and Y be two Hilbert A-modules. For $x \in \mathrm{X}$ and $y \in \mathrm{Y}$, we define $\theta_{x, y}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\theta_{x, y}(z)=x \cdot\langle y, z\rangle_{A}$. We define $\mathcal{K}(\mathrm{X}, \mathrm{Y})$ to be the closed linear subspace of $\mathcal{L}(\mathrm{X}, \mathrm{Y})$ spanned by $\left\{\theta_{x, y}: x \in \mathrm{X}\right.$ and $\left.y \in \mathrm{Y}\right\}$. In particular, $\mathcal{K}(X):=\mathcal{K}(X, X)$.

Definition 1.5. In the strict topology (strong operator topology) on $\mathcal{L}(\mathrm{X}), T_{i} \rightarrow T$ if and only if $T_{i} x \rightarrow T x$ (in norm topology on X) for every $x \in \mathrm{X}$.

2 Unitization

There are more than one way to embed a C^{*}-algebra in a unital C^{*}-algebra.
Definition 2.1. An ideal I in a C^{*}-algebra A is essential if I has nonzero intersection with every other nonzero ideal in A.

Lemma 2.2. An ideal I is essential if and only if $a I=\{0\}$ implies $a=0$.
Theorem 2.3. Up to isomorphism, there is a unique unital C^{*}-algebra which contains A as an essential ideal and is maximal in the sense that any other such algebra can be embedded in it.

This C^{*}-algebra is called the multiplier algebra and is denoted by $M(A)$.
Definition 2.4. (via Universal Property) Let A be a C*-algebra. Its multiplier algebra $M(A)$ is any C^{*}-algebra satisfying the following universal property: for all C^{*}-algebra D containing A as an essential ideal, there exists a unique *homomorphism $\Psi: D \rightarrow M(A)$ such that Ψ extends the identity homomorphism on A.

2.1 Double centralizers (from Murphy)

The "traditional" definition of $M(A)$ for any C*-algebra A is given in terms of the double centralizer.

Definition 2.5. A double centralizer for a C^{*}-algebra A is a pair (L, R) of bounded linear maps on A, such that for all $a, b \in A$

$$
L(a b)=L(a) b, \quad R(a b)=a R(b) \quad \text { and } \quad R(a) b=a L(b) .
$$

Example 2.6. For example, if $c \in A$ is fixed, and L_{c}, R_{c} are the linear maps on A defined by $L_{c}(a)=c a$ and $R_{c}(a)=a c$, then $\left(L_{c}, R_{c}\right)$ is a double centralizer on A.
In Example 2.6, one can check that $\left\|L_{c}\right\|_{\mathrm{op}}=\left\|R_{c}\right\|_{\mathrm{op}}=\|c\|$. The map $c \mapsto\left(L_{c}, R_{c}\right)$ ends up being how we embed A into $M(A)$. More generally, we have the following:

Lemma 2.7. If (L, R) is a double centralizer on a C^{*}-algebra A, then $\|L\|=\|R\|$.
Denote the set of all double centralizers on a C*-algebra A by $M(A)$. We define the norm on (L, R) to be $\|L\|=\|R\|$ from Lemma 2.7. We define the following operators on $M(A)$:
(i) $\left(L_{1}, R_{1}\right)+\left(L_{2}, R_{2}\right)=\left(L_{1}+L_{2}, R_{2}+R_{1}\right)$,
(ii) $\lambda(L, R)=(\lambda L, \lambda R)$,
(iii) $\left(L_{1}, R_{1}\right)\left(L_{2}, R_{2}\right)=\left(L_{1} L_{2}, R_{2} R_{1}\right)$,
(iv) $(L, R)^{*}=\left(R^{*}, L^{*}\right)$

Theorem 2.8. If A is a C^{*}-algebra, then $M(A)$ with the norm and operations defined as above is a unital C^{*}-algebra with identity $\left(\mathrm{id}_{A}, \mathrm{id}_{A}\right)$.

The map $A \rightarrow M(A), a \mapsto\left(L_{a}, R_{a}\right)$ is an isometric $*$-homomorphism, so A can be realized as a closed $*$-subalgebra of $M(A)$.

2.2 $M(A)$ as the Adjointable Operators on A_{A}

For any C^{*}-algebra A, we can form a (right) Hilbert A-module, $\mathrm{X}=A_{A}$, by letting A act on itself by right multiplication: $a \cdot b=a b$, and define $\langle a, b\rangle_{A}=a^{*} b$.

We identify A with $\mathcal{K}\left(A_{A}\right)$ in the following way. For each fixed $a \in A$, we can consider the (adjointable) operators L_{a} on A_{A} given by $L_{a}(x)=a x$, whose adjoint is $L_{a^{*}}$. One checks that the map

$$
L:\left\{\begin{array}{l}
A \rightarrow \mathcal{L}\left(A_{A}\right) \\
a \mapsto L_{a}
\end{array}\right.
$$

is an isometric homomorphism, so it embeds A onto a C^{*}-subalgebra of $\mathcal{L}\left(A_{A}\right)$. Since

$$
\theta_{a, b}(c)=a\langle b, c\rangle_{A}=a b^{*} c=L_{a b^{*}}(c)
$$

and products of the form $a b^{*}$ is dense in A, this map L is an isomorphism of A onto $\mathcal{K}\left(A_{A}\right)$.

It will turn out that $M(A)$ can be identified with $\mathcal{L}\left(A_{A}\right)$. To show this, we need to prove the following:

- $A \cong \mathcal{K}\left(A_{A}\right)$ is an essential ideal of $\mathcal{L}\left(A_{A}\right)$. This follows from Lemma 2.2.
- maximal: any C^{*}-algebra B containing A as an essential ideal embedded in $\mathcal{L}\left(A_{A}\right)$,
- $\mathcal{L}\left(A_{A}\right)$ is unique.

Definition 2.9. Let A be a C^{*}-algebra and X be a Hilbert A-module. We say that a $*$-homomorphism is nondegenerate if $\alpha(A) \mathrm{X}$ (linear space of products of elements of $\alpha(A)$ and X) is dense in X .

Example 2.10. The inclusion map $\mathcal{K}(\mathrm{X}) \hookrightarrow \mathcal{L}(\mathrm{X})$ is nondegenerate.
Proposition 2.11. Let A, B, and C be C^{*}-algebras with B an ideal in C, and let X be a Hilbert A-module. If $\alpha: B \rightarrow \mathcal{L}(\mathrm{X})$ is a nondegenerate $*$-homomorphism, then α extends uniquely to $a *$-homomorphism $\bar{\alpha}: C \rightarrow \mathcal{L}(\mathrm{X})$. If α is injective and Bis essential in C, then $\bar{\alpha}$ is injective.

Applying to $B=A$ and $\mathrm{X}=A_{A}$ with α being the embedding of A in $\mathcal{L}\left(A_{A}\right)$, it follows that any C^{*}-algebra containing A as an essential ideal can be embedded in $\mathcal{L}\left(A_{A}\right)$. Uniqueness also follows fro the above Proposition.
Example 2.12 (Theorem). For a Hilbert A-module $\mathrm{X}, \mathcal{L}(X) \cong M(\mathcal{K}(\mathrm{X}))$.
Example 2.13. Let X be a locally compact space, then $M\left(C_{0}(X)\right) \cong C(\beta X)$, where βX is the Stone-C̆ech compactification of X.

3 Morphisms

Definition 3.1. For C^{*}-algebras A and B, we define a morphism from A to B to be a nondegenerate $*$-homomorphism from A to $M(B)$. We denote the set of all morphisms from A to B by $\operatorname{Mor}(A, B)$.

Proposition 3.2. Let A and B be C^{*}-algebras and let X be a Hilbert B-module. For $a *$-homomorphism $\alpha: A \rightarrow \mathcal{L}(\mathrm{X})$, the following conditions are equivalent:
(i) α is nondegenerate,
(ii) α is the restriction of A of a unital $*$-homomorphism $\bar{\alpha}$ from $M(A)$ to $\mathcal{L}(X)$ which is strictly continuous on the unit ball,
(iii) for some approximate unit $\left(e_{i}\right)$ of $A, \alpha\left(e_{i}\right) \rightarrow \operatorname{Id}_{\mathrm{X}}$ strictly, where Id_{X} is the identity map on X .

To ease notation, we usually just write $\alpha \in \operatorname{Mor}(A, B)$ (rather than \bar{a}) to denote the extension of α to $M(A)$. For $\beta \in \operatorname{Mor}(B, C)$, the composition defined when we interpret β to be its extension from $M(B)$ to $M(C)$.

