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1 Reminder of some definitions

Definition 1.1. Throughout this section A will be a C*-algebra and X will be
a (right) Hilbert A-module. That is, X is a complex vector space with a (right)
A-action, i.e., a bilinear pairing (x, a) 7→ x · a : X×A→ X satisfying:

(i) (x+ y) · a = x · a+ y · a,

(ii) x · (a+ b) = x · a+ x · b,

(iii) (x · a) · b = x · (ab),

(iv) (λx) · a = x · (λa) = λ (x · a).

In addition, X has an A-valued the inner product 〈·, ·〉A : X× X→ A satisfying

(i) 〈x, λy + µz〉A = λ〈x, y〉A + µ〈x, z〉A,

(ii) 〈x, y · a〉A = 〈x, y〉Aa,

(iii) 〈x, y〉∗A = 〈y, x〉A,

(iv) 〈x, x〉A ≥ 0 (as a positive element of A),

(v) 〈x, x〉 = 0 implies that x = 0.

Moreover, X is complete with respect to the norm defined by ‖x‖A := ‖〈x, x〉A‖1/2.

Definition 1.2. A Hilbert A-module is full if the ideal

I = span{〈x, y〉A : x, y ∈ X}

is dense in A.

Definition 1.3. Suppose X and Y are Hilbert A-modules. A function T : X→ Y
is adjointable if there is a function T ∗ : Y → X such that

〈T (x), y〉A = 〈x, T ∗(y)〉A for all x, y ∈ X

We denote by L(X,Y) the set of all adjointable operators from X to Y, and L(X)
for L(X,X).

Definition 1.4. Let X and Y be two Hilbert A-modules. For x ∈ X and y ∈ Y,
we define θx,y : X→ Y by θx,y(z) = x · 〈y, z〉A. We define K(X,Y) to be the closed
linear subspace of L(X,Y) spanned by {θx,y : x ∈ X and y ∈ Y}. In particular,
K(X) := K(X,X).

Definition 1.5. In the strict topology (strong operator topology) on L(X), Ti → T
if and only if Tix→ Tx (in norm topology on X) for every x ∈ X.
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2 Unitization

There are more than one way to embed a C*-algebra in a unital C*-algebra.

Definition 2.1. An ideal I in a C*-algebra A is essential if I has nonzero inter-
section with every other nonzero ideal in A.

Lemma 2.2. An ideal I is essential if and only if aI = {0} implies a = 0.

Theorem 2.3. Up to isomorphism, there is a unique unital C*-algebra which
contains A as an essential ideal and is maximal in the sense that any other such
algebra can be embedded in it.

This C*-algebra is called the multiplier algebra and is denoted by M(A).

Definition 2.4. (via Universal Property) Let A be a C*-algebra. Its multi-
plier algebra M(A) is any C*-algebra satisfying the following universal property:
for all C*-algebra D containing A as an essential ideal, there exists a unique ∗-
homomorphism Ψ : D →M(A) such that Ψ extends the identity homomorphism
on A.

2.1 Double centralizers (from Murphy)

The “traditional” definition of M(A) for any C*-algebra A is given in terms of
the double centralizer.

Definition 2.5. A double centralizer for a C*-algebra A is a pair (L,R) of
bounded linear maps on A, such that for all a, b ∈ A

L(ab) = L(a)b, R(ab) = aR(b) and R(a)b = aL(b).

Example 2.6. For example, if c ∈ A is fixed, and Lc, Rc are the linear maps on A
defined by Lc(a) = ca and Rc(a) = ac, then (Lc, Rc) is a double centralizer on A.

In Example 2.6, one can check that ‖Lc‖op = ‖Rc‖op = ‖c‖. The map c 7→ (Lc, Rc)
ends up being how we embed A into M(A). More generally, we have the following:

Lemma 2.7. If (L,R) is a double centralizer on a C*-algebra A, then ‖L‖ = ‖R‖.

Denote the set of all double centralizers on a C*-algebra A by M(A). We define
the norm on (L,R) to be ‖L‖ = ‖R‖ from Lemma 2.7. We define the following
operators on M(A):

(i) (L1, R1) + (L2, R2) = (L1 + L2, R2 +R1),

(ii) λ(L,R) = (λL, λR),

(iii) (L1, R1)(L2, R2) = (L1L2, R2R1),

(iv) (L,R)∗ = (R∗, L∗)

Theorem 2.8. If A is a C*-algebra, then M(A) with the norm and operations
defined as above is a unital C*-algebra with identity (idA, idA).

The map A → M(A), a 7→ (La, Ra) is an isometric ∗-homomorphism, so A can
be realized as a closed ∗-subalgebra of M(A).
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2.2 M(A) as the Adjointable Operators on AA

For any C*-algebra A, we can form a (right) Hilbert A-module, X = AA, by let-
ting A act on itself by right multiplication: a · b = ab, and define 〈a, b〉A = a∗b.

We identify A with K(AA) in the following way. For each fixed a ∈ A, we can
consider the (adjointable) operators La on AA given by La(x) = ax, whose adjoint
is La∗ . One checks that the map

L :

{
A→ L(AA)

a 7→ La

is an isometric homomorphism, so it embeds A onto a C*-subalgebra of L(AA).
Since

θa,b(c) = a〈b, c〉A = ab∗c = Lab∗(c)

and products of the form ab∗ is dense in A, this map L is an isomorphism of A
onto K(AA).

It will turn out that M(A) can be identified with L(AA). To show this, we need
to prove the following:

• A ∼= K(AA) is an essential ideal of L(AA). This follows from Lemma 2.2.

• maximal: any C*-algebra B containing A as an essential ideal embedded in
L(AA),

• L(AA) is unique.

Definition 2.9. Let A be a C*-algebra and X be a Hilbert A-module. We say
that a ∗-homomorphism is nondegenerate if α(A)X (linear space of products of
elements of α(A) and X) is dense in X.

Example 2.10. The inclusion map K(X) ↪−→ L(X) is nondegenerate.

Proposition 2.11. Let A, B, and C be C*-algebras with B an ideal in C, and let
X be a Hilbert A-module. If α : B → L(X) is a nondegenerate ∗-homomorphism,
then α extends uniquely to a ∗-homomorphism α : C → L(X). If α is injective
and Bis essential in C, then α is injective.

Applying to B = A and X = AA with α being the embedding of A in L(AA), it
follows that any C*-algebra containing A as an essential ideal can be embedded
in L(AA). Uniqueness also follows fro the above Proposition.

Example 2.12 (Theorem). For a Hilbert A-module X, L(X) ∼= M (K(X)).

Example 2.13. Let X be a locally compact space, then M (C0(X)) ∼= C(βX),
where βX is the Stone-C̆ech compactification of X.

3 Morphisms

Definition 3.1. For C*-algebras A and B, we define a morphism from A to B
to be a nondegenerate ∗-homomorphism from A to M(B). We denote the set of
all morphisms from A to B by Mor(A,B).

Proposition 3.2. Let A and B be C*-algebras and let X be a Hilbert B-module.
For a ∗-homomorphism α : A→ L(X), the following conditions are equivalent:
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(i) α is nondegenerate,

(ii) α is the restriction of A of a unital ∗-homomorphism α from M(A) to L(X)
which is strictly continuous on the unit ball,

(iii) for some approximate unit (ei) of A, α(ei)→ IdX strictly, where IdX is the
identity map on X.

To ease notation, we usually just write α ∈ Mor(A,B) (rather than a) to denote
the extension of α to M(A). For β ∈ Mor(B,C), the composition defined when
we interpret β to be its extension from M(B) to M(C).

4


	Reminder of some definitions
	Unitization
	 Double centralizers (from Murphy)
	M(A) as the Adjointable Operators on AA

	Morphisms

